

MAHAUSHADHI PARIKRAMA

JEEVAN SANTHI

e-BULLETIN Vol.9: Aug-2025

A News Letter from Dept. of Pharmacy Practice, Santhiram College of Pharmacy-Nandyal

SANTHIRAM COLLEGE OF PHARMACY AUTONOMOUS

NAAC A+ Accredited Institution, 2(f) of UGC act 1956, Approved by PCI New Delhi and Affiliated to JNTUA Anantapur, ISO 9001: 2015 Certified Institute, Nerawada(V), Panyam(M), Nandyala - 518112, Andhra Pradesh, India.

EDITORIAL BOARD

Chief Patron:

Dr.M.SANTHIRAMUDU

Associate Patron:

Dr.C.MADHUSUDHANA CHETTY

Advisory Board:

Dr.L.SHIVA SANKAR REDDY

Dr.S.V.SURESH KUMAR

Editor in chief:

Dr.R.E.UGANDAR

Development Editors:

Ms. M.PRAISY GLADYS

Ms. VINEETHA
Associate Editors:

Dr.C.BHARGAVA REDDY

Dr.A.SAI KESHAVA REDDY

Dr.MASAPOGU SWAPNA

Dr.BATTULA PRADEEP

Student editors:

Mr. SHAIK ONTELA MASOOD

Ms. G.SUPRIYA

Ms. V.KIRANMAI

Ms.S.RUKHIYA THABASUM

Ms. M.LAKSHMI SREYA

Mr. T. ESWAR

MS. K.SUJATHA

MS. K.PREETHI SPANDANA

Ms. D.SIVA HEMANJALI

Inside this issue

- Chairman message
- Principal message
- Editorial desk
- SRCP achievements
- Andropause Unmasked: Revealing The Silent Men's Health Crisis
- Metformin: A Versatile Medication With Hidden Potential
- Drug Repurposing: A New Paradigm In Cancer Therapy
- Chronic Alcoholism, Smoking And SMA Syndrome: A Surgical Case Report
- Beyond Antibiotics: Outsmarting Resistant Pathogens
- Human Brain Tumor Xenografts In Nude Mice As A Chemotherapy Model
- Benzodiazepines In The Brain: Pharmacological Mechanisms & Cns-Driven Effects
- Personalised Medicine: Revolutionising Healthcare Through Precision
- The Innovative Potential Of Spanlastics Nanovesicles In Drug Delivery
- SRCP events
- Day scoops
- Pharmacy practice documentations
- SRCP in newspapers
- SRCP placements
- SRCP activities & achievements

CHAIRMAN MESSAGE

Dr.M.Santhiramudu

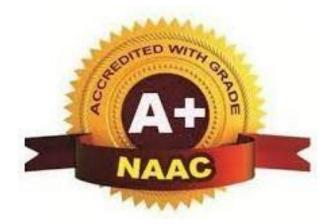
It gives me immense pleasure to note that Jeevan Santhi, the official newsletter of SRCP, is being released for publication. This vibrant platform captures and reflects the essence of our institution by showcasing a wide range of co-curricular and extracurricular activities. It stands as a testament to the dynamic spirit of our students and faculty. At SRCP, we are committed to nurturing competent pharmacists who not only possess academic excellence but are also guided by strong ethical and moral values. Our aim is not only to prepare students for a successful career but also to help them lead a meaningful and principled life.

PRINCIPAL MESSAGE

Dr.C.Madhusudhana Chetty

It is with immense pleasure that I announce the release of Volume 9, Issue 1 of our college newsletter, Jeevan Santhi. A newsletter is often considered the mirror of an institution, reflecting its vision, mission, achievements, and the vibrant spirit within. This edition highlights the people, programs, and progress that continue to position SRCP as one of the premier pharmaceutical education centers in Nandyal District, Andhra Pradesh. I am confident that Jeevan Santhi will serve as a meaningful platform for our students and faculty to express their thoughts, creativity, and contributions.

EDITORIAL DESK


We, the Editorial Committee, take great pride in presenting Volume 9, Issue 1 of Jeevan Santhi, the official newsletter of Santhiram College of Pharmacy. This edition captures the vibrant academic, co-curricular, and extracurricular activities that have taken place on our campus, reflecting the collective achievements of our students and faculty. We extend our heartfelt gratitude to our respected Chairman for his continued encouragement and generous support in bringing out this departmental newsletter. Jeevan Santhi serves as a valuable platform for budding pharmacists to share knowledge, insights, and recent advancements in pharmacy practice and the profession at large. We hope this issue inspires and informs, while strengthening the spirit of learning and collaboration within our **SRCP** family.

ACHIEVEMENT

NATIONAL ASSESSMENT AND ACCREDITATION COUNCIL

(Autonomous Institution of the University Grants Commission)

Declared

SANTHIRAM COLLEGE OF PHARMACY, NANDYAL WITH CGPA 3.35...

THE SRCP IS CONFERRRED WITH AUTONOMOUS STATUS BY THE UGC FROM THE AY: 2024-25 for 10 YEARS.

THE SRCP IS THE FIRST INSTITUTE RECEIVED

A+ GRADE AMONG THE

PHARMACY COLLEGES IN RAYALASEEMA REGION.

ANDROPAUSE UNMASKED: REVEALING THE SILENT MEN'S HEALTH CRISIS

INTRODUCTION

The more popular name for andropause is "male menopause." It explains how cisgender guys' testosterone levels decline with aging. The Greek term "andras" refers to a male person; however, "pause" indicates cessation. Male climacteric symptoms include hot flashes, exhaustion, anxiety, poor libido, hostility, lethargy, and sadness. The terms "male climacteric," "androclise," "Androgen Decline in Ageing Male (ADAM)," "aging male syndrome," "Late Onset Hypogonadism (LOH)," "male menopause," "partial androgen deficiency in aging male (PADAM)," "viropause," "symptomatic late-onset hypogonadism (SLOH)," or, more precisely, "testosterone deficiency syndrome (TDS)" have been used to describe it^{1,2,3}. The phrase "male menopause" was coined in 1944 by Hellers and Meyers, who were the first to identify the decline in men's general and sexual health and link it to lower testosterone levels⁴. Men are deemed to be in real andropause only if they have had surgical or medication castration and have lost their capacity to testify due to diseases, trauma, or metastatic prostate cancer⁵.It happens when men's synthesis of testosterone and dehydroepiandrosterone (DHEA) gradually and steadily declines. Testosterone levels fall with aging at a rate of 1% per year, and this decline is more evident in free testosterone levels due to changes in sex hormone binding globulin (SHBG)⁶. Understanding this phenomenon is critical since low T levels can contribute to a variety of negative outcomes, including diabetes and prediabetes, decreased bone and muscle mass, impaired sexual function, and lower quality of life. In 2007, a group of men from an andrology clinic found that 42% of their patients suffered from depression. This research emphasizes how crucial it is to evaluate men for menopausal mood disorders7. Even though LOH is common, it is often misdiagnosed and left untreated.

ROLE OF TESTOSTERONE IN MALE PHYSIOLOGY

Testosterone is essential for key aspects of male sexual development, including testicular descent, spermatogenesis, penile and testicular growth, and increased libido. The testes typically begin to descend into the scrotum around seven months of pregnancy when they start secreting testosterone. Administering testosterone to male infants can assist in testicular descent if they have not descended by 4 to 6 months⁸. Additionally, testosterone regulates secondary male traits such as hair patterns and voice changes. It also promotes growth spurts during puberty by stimulating tissue growth and protein synthesis, as well as erythropoiesis, leading to higher hematocrit levels in men. However, as testosterone levels decline with age, men may experience reduced muscle mass, libido, testicular size, and bone density, along with increased fat production and a risk of anemia⁹.

LOW TESTOSTERONE AFFECTS AGING

Testosterone is crucial for the integrity and maintenance of aging males' systems and organs. The decline of the hypothalamic-pituitary-testes axis contributes to late-onset hypogonadism (LOH), a common effect of aging. Men may experience various symptoms due to decreasing testosterone levels, including reduced physical strength, weight gain, depression, concentration issues, decreased libido,

muscle atrophy, insomnia, and hot flashes. As men age, testosterone levels gradually decline, exacerbated by age-related diseases, medications, and malnutrition. Lower testosterone is associated with changes in body composition, sexual function, mood, cognitive function, sleep disturbances, increased cardiovascular issues, erectile dysfunction, reduced lean muscle mass, and decreased bone mineral density (depicted in Figure 1)¹⁰.

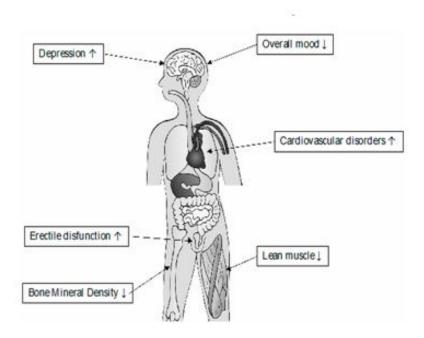


Fig:1 Impact of Low Testosterone in Elderly Individuals.

DIAGNOSIS OF LOH

Low libido is the most common sign of hypogonadism. Erectile dysfunction, reduced muscular mass and strength, increased body fat, decreased bone mineral density and osteoporosis, less vigor, and depression are some other signs of hypogonadism. According to the EMAS results, the minimum requirements for diagnosing LOH in older men are the presence of three sexual symptoms (erectile dysfunction, morning erections, and decreased libido) along with a total testosterone level of less than 11 nmol/l and a free testosterone level of less than 220 pmol/l. Due to their low specificity (30 and 39%, respectively), questionnaires like the Aging Male Symptom (AMS) Score and ADAM are not advised for the diagnosis of hypogonadism¹¹. The gold standard techniques for identifying accessible and free testosterone include sulfate precipitation and equilibrium dialysis¹².

TREATMENT

TESTOSTERONE REPLACEMENT THERAPY

The act of replenishing lost testosterone as a result of an injury, a congenital defect, or a disease that results in low testosterone levels is known as Testosterone Replacement Therapy. Additionally, it can be used to raise testosterone levels that have decreased following an orchiectomy, which is the removal of one or both testicles. Testosterone Replacement Therapy is commonly administered to men who exhibit signs of hypogonadism and low testosterone levels. When a person receives Testosterone Replacement Therapy (TRT), their low testosterone production can be corrected,

perhaps giving them back their lost masculinity. It has been demonstrated that using TRT for hypogonadism is typically safe and effective although more clinical study data is required.

ADMINISTRATION ROUTE	AVAILABLE FORMULATIONS		
Injectables	Testosterone aqueous, Testosterone enanthate, Testosterone cypionate, Testosterone undecanoate. Testosterone propionate,		
Oral	Testosterone undecanoate.		
Buccal	Buccal, bio-adhesive, testosterone tablets.		
Topical	Testosterone gel, Transdermal testosterone patch.		
Subcutaneous	Surgical implants		

Table 1: Available formulations for TRT

CONCLUSION

In summary, andropause, sometimes known as "male menopause," is the term used to describe the progressive reduction of testosterone levels in older men, which results in a range of physical and mental symptoms. Men's physical strength, sexual function, mood, and general health can all be adversely affected by this drop, which is associated with diseases such as late-onset hypogonadism (LOH). Since testosterone affects important developmental processes and secondary male traits, it is imperative to comprehend its function in male physiology. While testosterone levels and symptoms must be carefully evaluated to diagnose LOH, therapeutic options, including Testosterone Replacement Therapy (TRT), can successfully raise testosterone levels and reduce related symptoms. To guarantee the safety and effectiveness of TRT in older men, however, and to enhance treatment procedures, more study is required. Improving the health and well-being of older men requires addressing low testosterone.

REFERENCE

- 1. Singh P. Andropause: current concepts. Indian journal of endocrinology and metabolism. 2013 Dec 1:17(Suppl 3):S621-9.
- 2. Abootalebi M, Kargar M, Jahanbin I, Sharifi AA, Sharafi Z. Knowledge and attitude about andropause among general physicians in Shiraz, Iran 2014. International journal of Community based Nursing and Midwifery. 2016 Jan;4(1):27.
- 3. Saalu LC, Osinubi AA. Andropause (male menopause): valid concepts, fables and controversies. University of Lagos Journal of Basic Medical Sciences. 2022 Aug 31;1(1).
- 4. Shivakumar D, Nagaraju K. Male Menopause: Concern Needs Attention. Indian Journal of Pharmacy Practice. 2025 Apr;18(2):180-3.
- 5. Singh P. Andropause: current concepts. Indian J Endocrinol Metab. 2013:(Suppl 3):S621.

- 6. Matsumoto AM. 'Andropause'--are reduced androgen levels in aging men physiologically important?. Western journal of medicine. 1993 Nov;159(5):618.
- 7. Sato Y, Tanda H, Kato S, et al. Prevalence of major depressive disorder in self-referred patients in a late-onset hypogonadism clinic. Int J Impot Res. 2007;19:407-10.
- 8. Kalfa N, Gaspari L, Ollivier M, Philibert P, Bergougnoux A, Paris F, Sultan C. Molecular genetics of hypospadias and cryptorchidism recent developments. Clinical Genetics. 2019 Jan;95(1):122-31.
- 9. Nassar GN, Leslie SW. Physiology, testosterone [Updated 2022 Jan 4]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022.
- 10. Barone B, Napolitano L, Abate M, Cirillo L, Reccia P, Passaro F, Turco C, Morra S, Mastrangelo F, Scarpato A, Amicuzi U. The role of testosterone in the elderly: what do we know? International journal of molecular sciences. 2022 Mar 24;23(7):3535.
- 11. Bassil N. Late-onset hypogonadism. Medical Clinics. 2011 May 1;95(3):507-23.
- 12. Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H. Utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. The Journal of Clinical Endocrinology & Metabolism. 2007 Feb 1;92(2):405-13.

SHAIK ONTELA MASOOD

Pharm.D, Intern
Department of Pharmacy Practice
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

METFORMIN: A VERSATILE MEDICATION WITH HIDDEN POTENTIAL

INTRODUCTION:

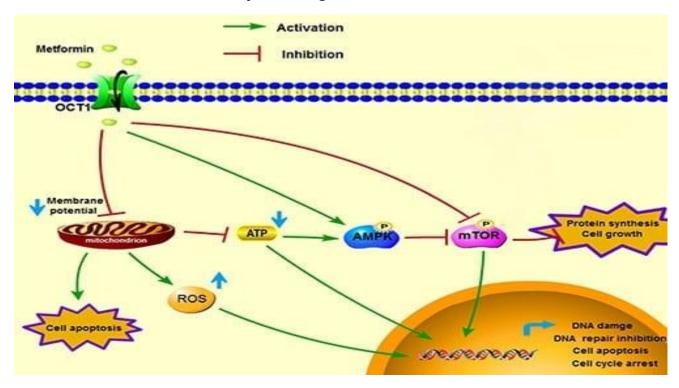
The discovery of metformin dates back to 17th century. Galega officinalis L., also known as the French lilac, was used as an herbal remedy to relieve the intense urination caused by the diabetes mellitus in medieval times¹. The guanides are rich in French lilac and essential compounds in lowering blood glucose, which led to development of three biguanides, metformin, phenformn, and buformin. Among them metformin was found to be the most useful drug because of its low toxicity. It was first synthesized in 1922, but approved for treatment of diabetes in Europe until 1950s and by FDA in USA in 1994². Phenformin and buformin were abandoned in 1970s for intolerable side effects such as high frequency of lactic acidosis and increased mortality. The United Kingdom Prospective Diabetes Study (UKPDS) has revealed that metformin is the only oral anti-hyperglycemic agent that reduces macrovascular complications in patients with T2DM³. Further clinical investigations and practice have recommended it as a first line drug for T2DM. Moreover, it has been expanded to treatment of other diseases such as obesity, PCOS,tumour,Agieng.

ANTI-DIABETIC ACTION

Metformin suppresses hepatic glucose production and stimulates glucose uptake in muscle and adipose, resulting in improvement of hyperglycemia and hyperlipidemia and alleviating non-alcoholic fat liver disease (NAFLD)^{4,5}. In addition to enhancing insulin sensitivity in peripheral tissues, metformin can protect b-islets against lipotoxicity and glucotoxicity to restore insulin secretion. The first target of metformin identified is the 5'-AMP activated protein kinase (AMPK), although some effects are reported to be mediated through AMPK-independent mechanisms⁶.

ANTI-OBESITY

The effect of metformin on body weight and NAFLD has been assessed in a number of studies with inconclusive results. A 10-year follow-up study on patients with T2MD and obesity revealed modest body weight loss in groups treated with metformin, as compared to placebo⁷. However, Seifarth et al showed reduction of body weight in obese individuals without T2DM, in which treatment with metformin for 6 months caused a mean weight loss of 5.8 ± 7.0 kg, while untreated control group gained 0.8 ± 3.5 kg on average⁸.


CARDIOVASCULAR PROTECTION

Cardiovascular disease (CVD) has become one of the most severe complications of T2DM, an important factor for mortality. Thus, for patients with T2DM, cardiovascular protection is extremely important. In 1998, the UKPDS demonstrated that monotherapy of metformin was correlated to decreased risk of CVD in overweight T2DM patients⁹. Studies have shown that metformin significantly reduces free fatty acid, triglyceride and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels in body, which account for decreases in the risk of CVD¹⁰. In a 7-year follow-up study, Xu et al assessed the effects of metformin on metabolite profiles and LDL cholesterol (LDL-c). The results revealed a lower blood level of LDL-c in T2DM patients treated with metformin, compared to other groups.

Hyperlipidemia, especially LDL-c, has been proven to be a risk factor of coronary heart diseases. Therefore, metformin can reduce the risk of coronary heart diseases complicated with T2DM¹¹. Therefore, metformin can reduce the risk of coronary heart diseases complicated with T2DM.

ANTI-TUMOUR ACTIVITY

The effects of metformin on tumour have emerged as a hot topic during the last decade. The first seminal report is the retrospective investigation on the incidence of tumour in T2DM patients receiving metformin, which shows 30% reduction of overall tumour onsets¹². g. It is now found to reduce the risk of many cancers in patients with T2DM and improve their prognosis and survival rate. The anti-tumour effect of metformin depicted in fig:1.

Fig1: Metformin induces mitochondrial toxicity and activates the AMPK/mTOR signal pathway, resulting cell apoptosis, DNA damage and protein synthesis inhibition, which suppressed the tumor cell growth¹³.

GESTATIONAL DIABETES

Current animal and human data indicate that metformin is safe and effective in the management of gestational diabetes (GDM) and may improve immediate pregnancy outcomes. While there is assurance that it does not have teratogenic potential and there is some evidence of long-term effects in offspring exposed to metformin in utero, there is a need to further assess its role in fetal programming. Metformin may be considered as monotherapy in mild GDM, where it may result in less maternal weight gain, lower risk of PIH, lower risk of neonatal hypoglycemia and lower incidence of macrosomia. However, caution is needed due to its potential to cause significant fetal exposure and lack of long-term safety data related to fetal exposure.

REFERENCES

1. Witters LA. The blooming of the French lilac. J Clin Invest. 2001; 108:1105–1107.

Jeevan Santhi e-BULLETIN

- 2. Thomas I, Gregg B. Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes. 2017; 18:10–16.
- 3. Hundal RS, Inzucchi SE. Metformin: new understandings, new uses. Drugs. 2003; 63:1879–1894.
- 4. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016; 311:E730–E740.
- 5. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014; 7:241–253.
- 6. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014; 10:143–156.
- 7. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO, Goldberg R, Venditti E, Nathan DM, and Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009; 374:1677–86.
- 8. Seifarth C, Schehler B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes. 2013; 121:27–31.
- 9. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352:854–865.
- 10. Abbasi F, Chu JW, McLaughlin T, Lamendola C, Leary ET, Reaven GM. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metabolism. 2004; 53:159–164.

G. SUPRIYA

Pharm.D, Intern

Department of Pharmacy Practice

Santhiram college of Pharmacy

Nandyal, Andhra Pradesh, India

"DRUG REPURPOSING: A NEW PARADIGM IN CANCER THERAPY"

Repurposing existing drugs for cancer treatment has become a promising shortcut in oncology, offering new therapeutic possibilities without the lengthy and expensive process of novel drug development. A striking case is metformin, a staple in diabetes care, now under investigation for its anti-cancer properties in tumors like breast and colorectal due to its effect on cellular metabolism through AMPK activation and mTOR inhibition. Similarly, aspirin, a familiar over-the-counter remedy for pain and cardiovascular protection, has gained attention for reducing cancer risk by limiting inflammation and platelet-driven metastasis. Propranolol, primarily a beta-blocker for cardiac conditions, is now being explored in tumors like angiosarcoma and melanoma, where it counteracts stress-related growth and vascularization by targeting adrenergic receptors

Even drugs once abandoned, like thalidomide, have found redemption in oncology. Despite its historical infamy, it now plays a key role in treating multiple myeloma due to its ability to inhibit angiogenesis and modulate immune signalling. Chloroquine and hydroxychloroquine, once confined to malaria treatment, are being re-evaluated for cancer therapy as they block autophagy, a survival tactic for tumour cells under therapeutic stress. Disulfiram, known for deterring alcohol use, shows promise in treating cancers like glioblastoma and prostate by impairing ALDH, a stem cell marker, and creating toxic oxidative environments in tumour cells via copper binding.

Meanwhile, mebendazole, used against parasitic worms, disrupts cancer cell division by targeting microtubules, much like classic chemotherapy agents. The antifungal itraconazole is being assessed for cancers like lung and prostate, given its inhibition of Hedgehog signaling and angiogenesis. Celecoxib, a COX-2 inhibitor for arthritis, reduces inflammation that supports tumor growth and may enhance chemo efficacy. Even statins, better known for lowering cholesterol, are now linked to reduce cancer cell proliferation due to their interference with lipid metabolism, essential for membrane formation. All-trans retinoic acid (ATRA), once a dermatologic agent, now serves as a breakthrough therapy in acute promyelocytic leukemia by encouraging malignant cells to mature and cease proliferation. And clarithromycin, typically an antibiotic, is showing potential in treating multiple myeloma through its ability to dampen inflammatory cytokines.

Together, these examples reflect a growing realization that many drugs already in our pharmacopeia may hold hidden anti-cancer potential. This shift in approach is focusing on biological mechanisms rather than original indications challenges us to look deeper into the tools we already possess. Perhaps the most transformative treatments in oncology won't come from discovering something entirely new, but from reimagining what's already at our fingertips.

V.KIRANMAI

Pharm.D, Intern

Department of Pharmacy Practice

Santhiram college of Pharmacy

Nandyal, Andhra Pradesh, India

"CHRONIC ALCOHOLISM, SMOKING AND SMA SYNDROME: A SURGICAL CASE REPORT"

Superior Mesenteric Artery (SMA) syndrome is a rare condition that occurs when the third portion of the duodenum is compressed between the superior mesenteric artery and the abdominal aorta due to a reduced aortomesenteric angle, leading to intestinal obstruction. It is often precipitated by rapid or severe weight loss, which causes depletion of the mesenteric fat pad that normally cushions the artery. Chronic alcoholism and smoking are significant contributing factors, as they promote malnutrition, impair gastrointestinal motility, and accelerate weight loss, thereby increasing the risk of developing SMA syndrome.

In this case, a 65-year-old male with a 30-year history of heavy alcohol and tobacco use presented with persistent vomiting, anorexia, irregular bowel habits, shortness of breath, and an unplanned weight loss of 15 kg over three months. Examination revealed abdominal distension, and investigations showed a normal creatinine level, low hemoglobin, and preserved cardiac function. Ultrasonography demonstrated a dilated stomach and proximal duodenum with obstruction at the third part of the duodenum, suggestive of SMA syndrome. The patient underwent exploratory laparotomy with adhesiolysis, during which dense adhesions and dilated bowel loops were observed. Postoperative management included broadspectrum antibiotics to prevent infection, fluid and electrolyte replacement to address dehydration, and analgesics for pain control.

This case illustrates how chronic alcohol and tobacco use can indirectly lead to SMA syndrome by causing severe nutritional depletion and weight loss. Early recognition through imaging is essential for timely intervention, as untreated cases can lead to serious complications. While mild cases may respond to nutritional rehabilitation and conservative measures, advanced obstruction often requires surgical management, as demonstrated here. Lifestyle modification, dietary support, and regular follow-up are critical to preventing recurrence and ensuring long-term recovery.

REFERENCES

- Mohtashami, A., et al. (2022). Postoperative superior mesenteric artery syndrome following appendicectomy: A case report. International Journal of Surgery Case Reports, 90, 106629.
- Cantella, R., et al. (2022). An unusual cause of abdominal pain: Case report of a Superior Mesenteric Artery syndrome. International Journal of Surgery Case Reports, 94, 107034.
- van Rensburg, A. J., & Ghadiri, M. (2022). A case report of superior mesenteric artery syndrome. Journal of Surgical Case Reports, 2022(1), rjab630.
- Li, X., et al. (2022). Superior mesenteric artery syndrome after colectomy: A case report and literature review. Medicine, 101(35), e30427.
- Niasse, A., et al. (2022). Syndrome de la pince aorto-mésentérique sur cancer gastrique: à propos d'un cas. The Pan African Medical Journal, 42, 217.
- Lurie, A., et al. (2023). Superior Mesenteric Artery Syndrome Masquerading As Irritable Bowel Syndrome: A Case Report. Cureus, 15(8), e43623.
- Lakkanna, A., et al. (2024). Abdominal Pain Associated With Celiac Artery Compression and Superior Mesenteric Artery (SMA) Syndrome: A Case Report. Cureus, 16(9), e70520.

S.RUKHIYA THABASUM

Pharm.D, Intern
Department of Pharmacy Practice
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

"BEYOND ANTIBIOTICS: OUTSMARTING RESISTANT PATHOGENS"

Before the nineteenth century, infectious diseases were among the leading causes of death, significantly reducing life expectancy until the advent of antibiotics and vaccines. The discovery of penicillin by Alexander Fleming in 1928 revolutionized the treatment of bacterial infections, but pathogens soon developed the ability to resist these drugs. Overuse and misuse of antibiotics have accelerated this problem, particularly with highly resistant ESKAPE pathogens, making alternative strategies essential. Promising approaches include antimicrobial peptides, therapy, monoclonal antibodies, **CRISPR-Cas** phage systems, nanoparticles, and vaccines, alongside public education on responsible antibiotic use.

Antimicrobial peptides are short, positively charged molecules found in the innate immune system that disrupt bacterial cell membranes in diverse ways, making resistance rare. Phage therapy uses viruses that infect and kill bacteria, either by lysing the cell or being engineered to produce antimicrobial agents. Monoclonal antibodies can neutralize toxins, block virulence factors, and kill pathogens while sparing normal flora. CRISPR-Cas systems offer precise genetic targeting to remove resistance genes or restore bacterial sensitivity to antibiotics. Nanoparticles, due to their small size and large surface area, can physically and chemically attack pathogens, with metal-based nanoparticles showing strong bactericidal effects. Vaccines help prevent infections, reducing the need for antibiotics and slowing resistance spread through direct protection, herd immunity, and prevention of secondary bacterial infections.

While antimicrobial resistance remains one of the greatest medical threats, scientific innovation is providing new hope. These emerging strategies, supported by collaboration and public awareness, have the potential to outsmart resistant pathogens and shape a future where infections can be treated without fear.

REFERENCES

- 1. Wang, H., Chen, D., & Lu, H. (2022). Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Applied microbiology and biotechnology, 106(11), 3957–3972. https://doi.org/10.1007/s00253-022-11989-w
- 2. Chang, R. Y. K., Nang, S. C., Chan, H. K., & Li, J. (2022). Novel antimicrobial agents for combating antibiotic-resistant bacteria. Advanced drug delivery reviews, 187, 114378. https://doi.org/10.1016/j.addr.2022.114378
- 3. Berger, I., & Loewy, Z. G. (2024). Antimicrobial Resistance and Novel Alternative Approaches to Conventional Antibiotics. Bacteria, 3(3), 171-182.
- 4. Kaur I (2016) Novel Strategies to Combat Antimicrobial Resistance. J Infect Dis Ther 4: 292. doi:10.4172/2332-0877.1000292
- 5. Singha B, Singh V and Soni V (2024) Alternative therapeutics to control antimicrobial resistance: a general perspective. Front. Drug Discov. 4:1385460. doi: 10.3389/fddsv.2024.1385460
- 6. Musharrat Jahan Prima, Masriana Hassan, Juhi Sharma. (2023), Novel Approaches for Combating Antibiotic Resistance in Pathogenic Bacteria, Microbial Bioactives, 6(1), 1-18,9373

M.LAKSHMI SREYA

Pharm.D, Intern
Department of Pharmacy Practice
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

"HUMAN BRAIN TUMOR XENOGRAFTS IN NUDE MICE AS A CHEMOTHERAPY MODEL"

The development of human brain tumor xenografts in nude mice has provided researchers with a powerful preclinical tool for studying chemotherapy against brain cancers. Nude mice are chosen because they lack a thymus, which makes them immunocompromised and unable to reject implanted human tumor cells. This unique biological trait has enabled scientists to establish reproducible tumor growth in a living system, bridging the gap between cell culture studies and clinical trials. By allowing human tumors to grow in vivo, these models capture aspects of tumor biology and drug response that cannot be replicated in vitro.

One of the earliest and most influential contributions in this field came in 1983, when researchers tested the effects of various chemotherapeutic agents on two human brain tumors—a glioma (U-251) and a medulloblastoma (TE-671). These tumors were implanted both subcutaneously and intracranially in nude mice, after which animals were treated with a panel of antineoplastic drugs. Treatment effectiveness was measured in terms of increased life span, offering a quantifiable outcome for therapeutic benefit. Importantly, the study demonstrated that different tumor types reacted in very different ways to the same drugs, underscoring the need for tumor-specific evaluation.

The findings of this early work revealed striking contrasts. The U-251 glioma showed significant sensitivity to nitrosoureas such as BCNU, PCNU, and CCNU, with some treated mice experiencing extended survival times and even cures. In contrast, the TE-671 medulloblastoma exhibited only modest sensitivity to agents like AZQ and CCNU and was largely unresponsive to others. These results not only validated the xenograft model but also highlighted the heterogeneity of brain tumor responses, laying the groundwork for using this system as a screening tool for chemotherapeutic drugs.

Over time, researchers recognized the need to improve the model's clinical relevance. Subcutaneous tumor implantation, while easy and reproducible, did not accurately replicate the natural environment of brain tumors. A major advance came in 2021, when scientists developed an orthotopic glioma xenograft model by stereotactically injecting U87-MG cells directly into the brains of nude mice. This technique allowed tumors to grow within the brain's unique microenvironment, where they interacted with neural tissue and were influenced by the blood–brain barrier. Such features made the model more representative of human disease and provided a better platform for testing therapies that must overcome the barrier to reach brain tumors.

The orthotopic model also introduced new methods for studying tumor progression. Imaging techniques such as MRI, combined with histological examination, allowed precise monitoring of tumor growth and evaluation of treatment effects. These innovations improved reproducibility and reliability, making the model especially valuable for investigating drug resistance and testing novel therapeutic approaches. As a result, orthotopic xenografts are now regarded as a crucial intermediate step between cell culture experiments and human clinical trials.

Despite these advances, xenograft models in nude mice are not without limitations. The absence of a functional immune system means they cannot replicate the role of host immunity in cancer progression or treatment. This severely restricts their use in evaluating immunotherapies, which are increasingly central to modern oncology. To address this gap, researchers are developing alternative models such as patient-derived xenografts in "humanized" mice, which possess reconstituted human immune systems, as well as genetically engineered mouse models that spontaneously develop tumors. Nevertheless, nude mouse xenografts remain indispensable due to their cost-effectiveness, reproducibility, and established track record in drug screening. They continue to play a vital role in cancer research, providing a reliable foundation for the evaluation of new chemotherapeutic agents and contributing significantly to the progress of brain tumor therapy.

References:

- 1. AXTELL L, ASIRE A, MYERS M, eds. Cancer Patient Survival Report Number 5. Washington, DC, U.S. Government Printing Office, 1976, DHEW Publication No. (NIH) 77-992.
- 2. GERAN RI, CONGLETON GF, DUDECK LE, ABBOTT BJ, GARGUS JL. A mouse ependymoblastoma as an experimental model for screening potential antineoplastic drugs. Cancer Chemother Rep (Part 2) 1974, 4, 53-87.
- 3. SCHABEL FR JR, JOHNSTON TP, MCCALEB GS. Experimental evaluation of potential anticancer agents. VIII. Effects of certain nitrosoureas on intracerebral L-1210 leukemia. Cancer Res 1963, 23, 725-733.
- 4. SHAPIRO WR. Studies on the chemotherapy of experimental brain tumors: evaluation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, vincristine, and 5-fluorouracil. J Natt Cancer Inst 1971, 46, 359-368

T.ESWAR

B.Pharmacy, IV Year
Department of Pharmacology
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

"BENZODIAZEPINES IN THE BRAIN: PHARMACOLOGICAL MECHANISMS & CNS-DRIVEN EFFECTS"

Benzodiazepines are among the most widely prescribed drugs worldwide, commonly used in the management of anxiety disorders, insomnia, muscle spasms, and seizure disorders. Their clinical popularity is largely due to their rapid onset of action, broad therapeutic efficacy, and relatively favorable safety profile in the short term. Despite these advantages, concerns arise with prolonged use, as patients may experience sedation, cognitive impairment, dependence, and withdrawal symptoms. This dual nature of efficacy and risk underscores the importance of understanding their pharmacological basis to ensure safe and rational prescribing.

The central action of benzodiazepines lies in their ability to enhance gamma-aminobutyric acid (GABA)-mediated inhibition in the brain. By binding to an allosteric site on the GABAA_AA receptor complex, benzodiazepines increase the receptor's affinity for GABA, resulting in greater chloride influx, neuronal hyperpolarization, and reduced excitability. Different receptor subtypes mediate distinct clinical effects: $\alpha 1$ subunits are primarily responsible for sedation and anticonvulsant effects, $\alpha 2$ and $\alpha 3$ for anxiolysis and muscle relaxation, and $\alpha 5$ for cognitive and memory-related effects. This receptor subtype selectivity explains the diverse actions of benzodiazepines and has spurred ongoing research into developing agents that maximize therapeutic benefits while minimizing adverse effects.

Pharmacokinetic diversity further influences the clinical use of benzodiazepines. Most agents are well absorbed orally, highly lipophilic, and rapidly cross the blood-brain barrier. Their metabolism varies, with some undergoing hepatic phase I oxidation through cytochrome P450 enzymes and producing long-acting metabolites, while others are metabolized via direct conjugation and lack active metabolites, making them safer in elderly or hepatically impaired patients. The elimination half-life determines whether a benzodiazepine is classified as short-, intermediate-, or long-acting, and this dictates its clinical niche—from triazolam for sleep initiation, to lorazepam for anxiety management, to diazepam for seizure control and withdrawal syndromes.

Clinically, benzodiazepines exert multiple central nervous system effects. Their sedative and hypnotic actions are beneficial in insomnia but can alter normal sleep architecture with prolonged use. Their anticonvulsant properties make agents like diazepam, clonazepam, and lorazepam invaluable in acute seizure management. However, with chronic administration, tolerance develops, particularly to sedative effects, often leading to dose escalation. Dependence may occur within weeks or months, and abrupt discontinuation can produce severe withdrawal symptoms such as anxiety, tremors, seizures, and even psychosis. These risks, along with the potential for abuse, require careful medical supervision.

Despite these limitations, benzodiazepines remain an indispensable therapeutic class in clinical practice. Their rapid efficacy and reliability in acute settings continue to justify their use, provided clinicians remain vigilant about risks. Advances in receptor pharmacology raise the possibility of designing subtype-selective modulators that retain anxiolytic or anticonvulsant efficacy while reducing sedation, amnesia, and dependence liability. Until such drugs are widely available, benzodiazepine prescribing must remain individualized, with careful attention to treatment duration, patient characteristics, and the balance between therapeutic benefit and adverse effects.

REFERENCES:

Fox C, Liu H, Kaye AD (2011) Manchikanti L, Trescot AM, Christo PJ, et al, eds. Clinical Aspects of Pain Medicine and Interventional Pain Management: A Comprehensive Review, Antianxiety agents (ASIP Publishing; Paducah, KY) In, pp 543–552.Google Scholar

Kaye AD, Gayle K, Kaye AM (2012) in Moderate and Deep Sedation, Pharmacological agents in moderate and deep sedation, eds Urman RD, Kaye AD (Cambridge University Press; New York, NY) In, eds, pp 8–32.Google Scholar

Nardi AE, Perna G (5, 2006) Clonazepam in the treatment of psychiatric disorders: an update. Int Clin Psychopharmacol 21(3):131–142, pmid:16528135.CrossRefPubMedGoogle Scholar

Cascade E, Kalali AH (9, 2008) Use of benzodiazepines in the treatment of anxiety. Psychiatry (Edgmont) 5(9):21–22, pmid:19727256.PubMedGoogle Scholar

K. SUJATHA

B.Pharmacy, IV Year

Department of Pharmacology

Santhiram college of Pharmacy

Nandyal, Andhra Pradesh, India.

"PERSONALISED MEDICINE: REVOLUTIONISING HEALTHCARE THROUGH PRECISION"

Personalised medicine, also known as precision medicine, is transforming healthcare by tailoring treatments to the unique characteristics of each patient. Unlike the traditional "one-size-fits-all" approach, which bases therapies on population averages, personalised medicine considers individual differences in genetics, environment, and lifestyle. Advances in genomics, bioinformatics, and artificial intelligence have propelled this approach from theory into clinical practice, allowing physicians to design more precise and effective interventions while reducing the risk of adverse effects.

The foundation of personalised medicine lies in major scientific milestones, particularly the sequencing of the human genome in 2003, which opened the door to genomic medicine. This has been further enhanced by next-generation sequencing technologies and the integration of large-scale biological data. Genomics and proteomics allow the identification of disease-causing mutations, such as BRCA1 and BRCA2 in breast cancer, while pharmacogenomics predicts individual responses to drugs, enabling more accurate prescribing. Biomarkers like HER2 or PD-L1 now guide targeted therapies in oncology, while machine learning models integrate genomic and clinical data to improve diagnostic and therapeutic precision.

Clinical applications of personalised medicine are most evident in oncology, where drugs such as trastuzumab for HER2-positive breast cancer and EGFR inhibitors for lung cancer exemplify targeted approaches. Beyond cancer, cardiology also benefits, with genetic testing guiding statin therapy and risk assessment for sudden cardiac death. Pharmacogenomic testing reduces the trial-and-error process of drug selection and dosage, minimizing adverse drug reactions. Moreover, rare genetic diseases that were once undiagnosable are increasingly being identified through whole-exome and genome sequencing, providing patients with long-awaited answers and tailored treatment strategies.

The benefits of personalised medicine are substantial. Patients can receive treatments that are more likely to succeed, healthcare systems can avoid unnecessary costs from ineffective therapies, and preventive strategies can be enhanced through risk prediction and early intervention. However, several challenges remain. High costs of testing, limited accessibility, ethical dilemmas surrounding data privacy, and unclear regulatory frameworks all restrict its widespread adoption. Additionally, integrating complex genomic data into routine clinical workflows requires infrastructure, training, and collaboration across multiple disciplines, which are still developing.

Despite these challenges, the future of personalised medicine is promising. Ongoing research is expanding into multi-omics, combining genomics with proteomics, metabolomics, and other fields to create a more complete picture of patient health. Artificial intelligence will continue to refine predictive models, while innovations in personalised vaccines, cell therapies, and gene editing are on the horizon. To fully realize the potential of this transformative approach, investments in technology, ethical safeguards, and equitable access are essential. Personalised medicine is steadily shifting healthcare from a generalized, reactive model to one that is proactive, precise, and patient-centered.

K PREETHI SPANDANA

B.Pharmacy, IV Year
Department of Pharmacology
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

"THE INNOVATIVE POTENTIAL OF SPANLASTICS NANOVESICLES IN DRUG DELIVERY"

The pharmaceutical industry continues to evolve with the aim of developing safer, smarter, and more efficient drug delivery systems. Among the emerging innovations, spanlastics have gained significant attention as flexible nanovesicles designed for targeted therapy. These advanced carriers combine the advantages of nanotechnology with patient-centered needs, improving the way drugs interact with the body. By offering precise delivery and minimizing invasiveness, spanlastics represent a major step forward in modern therapeutics.

Spanlastics are distinct from other vesicular systems due to their unique composition and properties. Made from non-ionic surfactants combined with edge activators, they possess remarkable elasticity and deformability, allowing them to penetrate through narrow biological barriers like skin pores and mucosal membranes. This characteristic makes them suitable for drugs that otherwise have poor absorption. In addition to their flexibility, spanlastics are highly adaptable, capable of encapsulating both hydrophilic and lipophilic drugs, while also demonstrating chemical stability, biocompatibility, and safety, minimizing the risk of adverse reactions.

The advantages of spanlastics extend to improved drug bioavailability, sustained release, and enhanced patient compliance through reduced dosing frequency and minimal irritation. Their versatility enables application across multiple delivery routes, including transdermal, ocular, nasal, oral, and even brain-targeted systems. They can be customized for specific therapeutic needs, such as antifungal, anti-inflammatory, or antimicrobial therapies, while their simple composition makes them economical and scalable for industrial production.

Various methods are employed in the preparation of spanlastics, each suited to different drug types and applications. Common techniques include ethanol injection, thin-film hydration, and sonication or extrusion, which help form small, uniform, and elastic vesicles. Simpler approaches like hand shaking and ether injection are also utilized, particularly in laboratory and industrial settings, due to their cost-effectiveness. These preparation strategies highlight the adaptability of spanlastics as a platform technology in pharmaceutical research and development.

Real-world applications already demonstrate the potential of spanlastics in improving therapeutic outcomes. They have been used to enhance transdermal delivery of drugs such as lidocaine, achieve effective ocular antifungal treatments, and enable brain-targeted therapies through nasal delivery, thereby overcoming the blood—brain barrier. Their success with antibiotics, antifungals, and chemotherapeutics points to a future where spanlastics could also support vaccines, gene therapies, and macromolecule delivery. As research progresses, these nanovesicles are expected to revolutionize patient care by offering more efficient, safer, and personalized drug delivery solutions.

REFERENCES:

- Alhammid, S.N. Abd et al. "Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery," Maaen Journal for Medical Sciences, 2(3), 2023.
- "Spanlastic Nano-Vesicles: A Novel Approach to Improve the Solubility and Bioavailability," PubMed Central, 2024.
- "Spanlastics as a Potential Platform for Enhancing the Brain Delivery," PubMed Central, 2022.
- "Spanlastic as a Transdermal Drug Delivery System: A Systematic Review," Biomed Pharma Journal, 2025.
- "Nano Spanlastics; A New Formulation Approach in Drug Delivery," International Journal for Research Trends and Innovation, 2024.
- Nadim, N. et al., "A narrative review on potential applications of spanlastics," ScienceDirect, 2025.

D.SIVA HEMANJALI
B.Pharmacy, IV Year
Department of Pharmacology
Santhiram college of Pharmacy
Nandyal, Andhra Pradesh, India.

PHOTO GALLERY

Conducted LSSSDC upskilling training programme for pharmacists (30/1/2025)

Conducted World Cancer Day awareness programme (4/2/2025)

Campus placements-Medi Tech Hire (7/2/2025)

NSS-National Deworming Day (10/2/2025)

Awareness session on National Organ Donor Day (14/2/2025)

Drug free A.P- Awareness on drug abuse (14/2/2025)

Upskilling programme on Medical coding (21/2/2025)

National Pharmacy Education Day (6/3/2025)

Pharm D Farewell celebrations (22/3/2025)

National Science Day Celebrations (28/2/2025)

SRCP Indo Caribbean International Conference (13/3/2025)

Awareness on World TB day- Health & Ambulatory cell, NSS cell (24/3/2025)

Blood Donation Camp-NSS unit (28/3/2025)

World Traditional Day (19/4/2025)

Plantation on World Environment Day (5/6/2025)

B.Pharm - Farewell celebrations (3/4/2025)

Awareness on World Malaria Day (25/4/2025)

Yogandhra (International Yoga Day) - NSS cell (21/6/2025)

Indian Immunological Placement Drive (25/6/25)

International Day against Drug abuse & Illicit trafficking- NSS cell (26/6/25)

National Doctors Day- Health & Ambulatory Cell (1/7/25)

Free Medical Checkup (7/7/25)

Free Medical Checkup (7/7/25)

Alumni meet (25/7/25)

Awareness on Breast Feeding- on the occasion of Breast feeding week (1/8/25)

Awareness on Breast Feeding- on the occasion of Breast feeding week (4/8/25)

Awareness on freedom from plastic-NSS cell (12/8/25) Awareness on World Organ Donation Day(13/8/25)

Independence Day Celebrations (15/8/25)

Graduation Day Celebrations (23/8/25)

Graduation Day Celebrations (23/825)

Telugu Language Day (29/8/25)

National Sports Day celebrations (29/8/25)

SANTHIRAM COLLEGE OF PHARMACY (AUTONOMOUS)

Approved by PCI, New Delhi; Affiliated to JNTUA, Ananthapuramu NH - 40, NANDYAL - 518501 (Dt), ANDHRA PRADESH, INDIA

Web:www.srcpnandyal.edu.in Email:principal.hc@jntua.ac.in principal@srcpnandyal.edu.in

Hearty Congratulations to AP PGECET 2025 Rankers

M.MallikaAalam Rank:118 Ht.No:55168020407

I.Deepika Rank:174 Ht.No:55168010040

B.Likitha Rank:199 Ht.No:55165010043

R.Chetnika Rank:199 Ht.No:55168020515

B.Anil Kumar Rank:348 Ht.No:55168010010

M.Keerthi Rank:348 Ht.No:55168020391

S.Fayaz Basha Rank:348 Ht.No:55168010078

M.Divya Laxmi Rank:439 Ht.No:55168010078

C.Akhila Rank:439 Ht.No:55168010018

G. Anisha Rank:554 Ht No:55168020199

S.Nithish Kumar Rank:554 Ht.No:55168010078

P.NagaJyosthna Rank:773 Ht.No:55168020511

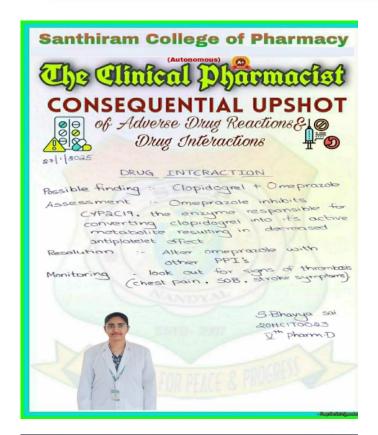
G.Akshaya Rank:955 Ht.No:55168020226

B.Supraja Rank:955 Ht.No:55168020076

D.Laleef Rank:955 Ht.No:55168010027

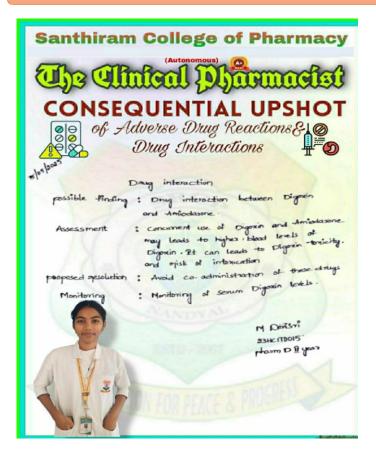
S.Sabiya Rank:1761 Ht.No:55168020598

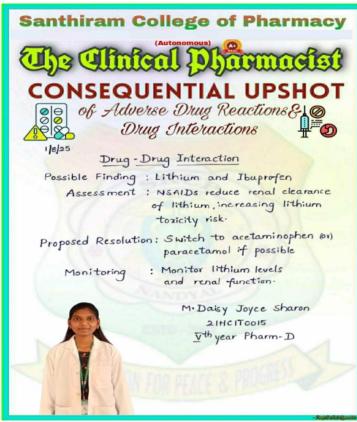
P.V.Sowjanya Rank:2235 Ht.No:55168020598

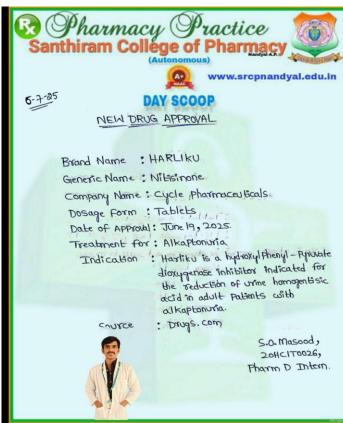




srcpnandyal.edu.in


PHARMACY PRACTICE - DAY SCOOP





PHARMACY PRACTICE - DOCUMENTATION (2024-25)

1.	ADRs	7
2.	Medication Error	40
3.	Drug-Drug Interaction	120
4.	Drug-Food Interaction	30
5.	Drug Query	45
6.	Query response	45
7.	Query Feedback	45
8.	Drug Profile	20
9.	Daily Scoops	- 160
10	Conference Attended	05
11	.Webinar Conducted	01
12	.Workshop	01
13	Publication	08
14	Book Chapters	04

SRCP GLIMPSES IN NEWS PAPER

02-Feb-25 - Main Edition - NANDYALA -ప్రజలకు నాణ్యమైన సేవలు అందించాలి

ం కాలేజ్ ఆఫ్ పార్మసీలో o ජීම පත්රාභ_ා වේදූස පත්රු<u>ජ</u>ු කර

శాంతిరాం ఫార్హసీ కళాశాలలో ప్రపంచ క్వాన్సర్ బినోత్సవం సందర్భంగా అవగాహన సదస్సు

నంద్యాల జిల్లా/పాణ్యం మండలం ఫిబ్రవరి 4(ఏపీ టుడే న్యూస్): పాణ్యం మండల వరిధిలోని శాంతిరాం కళాశాల ట్రిన్సిపల్ డాక్టర్ సి మధుసూదన శెట్టి మాట్లాడుతూ జీవనశైలిలో మార్పులు మరియు మనం తినే ఆహారంలో కల్తీ మూలంగా క్యాన్సర్ల బారిన పడుతున్నామని 🖁 వివరించారు. కాబట్టి మ్రతి ఒక్కరు చక్కటి ఆహార

నియమాలను వ్యాయామం పాటించడం వలన క్యాన్సర్ బారిన పడకుండా జాగ్రత్త వహించాలి అని తెలిపారు. ఈ కార్యక్రమంలో కళాశాల ఫార్మా డి విద్యార్థులు రకరకాల క్యాన్సర్ల గురించి వివరించారు. అలాగే మానవహారంగా నిలబడి క్యాన్సర్ పై పోరాదాలని వారు సూచించారు.

ಹಾಂತಿರಾಂ ಫಾರ್ತ್ರಸಿ ಕಣಾಕಾಲಲ್ ಫ್ರಾಂಗಣ ನಿಯಾಮಕಾಲು

నంద్యాల జిల్లా/పాణ్యం మండలం ఫిబ్రవరి 7(ఏపీ టుడే న్యూస్): పాణ్యం మందల పరిధిలోని శాంతిరాం ఫార్మసీ కళాశాలలో శుక్రవారం నాదు ಮಿಡಿಟಿಕ್ ಫ್ರಾರ್,ಮಿಡಿಕಲ್ ಮರಿಯು బెక్నికల్ కంపెనీలకు రిక్రూబ్మెంట్ పార్టనర్ వారు సీనియర్ ఎగ్జిక్యూటివ్ మరియు ఎగ్జిక్యూటివ్ జాబ్స్ కొరకు ఫార్మా డి,బీఫార్మసీ మరియు ఎం విద్యార్థులకు నియామకాలు నిర్వహించడం

జరిగినది.విద్యార్థులకు గ్రూప్ డిస్కషన్ మరియు పర్సనల్ ఇంటర్న్వూ ద్వారా ప్రాంగణ నియామక ప్రక్రియ చేపట్టనున్నట్లు మెడిటెక్ హైర్ కంపెనీ హెచ్ఆర్ అంజన్ పేర్కొన్నారు.ఈ ప్రాంగణ నియామకంలో ఎంపికైన

విద్యార్థులకు 3 లక్షల రూపాయల వార్మిక వేతనంతో ఉద్యోగ నియామకం జరుగుతుందని తెలిపారు.

తర్వాత విద్యార్థులకు గ్రూప్ డిస్కషన్ మలియు పర్సనల్ ఇంటర్న్యూ నిర్వహించారు.

ఈ ప్రాంగణయామకంలో 31 మంది శాంతిరాం ఫార్మసీ కళాశాల విద్యార్థులు ఎంపికైనట్టు కళాశాల ట్రిన్సిపల్ దాక్టర్ సి మధుసూదన్ శెట్టి తెలిపారు.(పాంగణ

నియామకంలో ఉద్యోగం సాధించిన విద్యార్థులకి కళాశాల వైర్మన్ డాక్టర్ ఎం శాంతి రాముడు మరియు డీన్ అశోక్ కుమార్ అభినందనలు తెలిపారు.ఈ ప్రాంగణ నియామక స్థుక్రియలో కళాశాల ప్లేస్నెంట్ అండ్

శాంతిరాం ఫార్హసీ కళాశాల ఆధ్వర్యంలో ఉచిత్ హెల్త్ చెకప్

ిటదయం (పతి ఉదయం, నంద్యాల: శాంతి రాం ఫార్మసీ కళాశాల 252525 కళాశాల ఆధ్వర్యంలో ဘဲက္မေဝ మండలం గ్రామంలో ఉచిత చెకప్ క్యాంప్ శుక్రవారం

సందర్భంగా 175 మందికిపైగా గ్రామస్తులకు బీపీ , షుగర్ విల పరీక్షలు పూర్తిగా ఉచితంగా చేసి మందులు కూడా ఉచితంగా పంపిణీ చేశారు. షుగర్ పరీక్షతో పాటు కాళ్ళలో రక్ష్మపసరణ తెలియజేసే పరీక్ష ,ఊపిరితిత్తుల పనితీరు తెలియజేసే పరీక్షలు నిర్వహించారు . కార్యక్రమంలో కళాశాల ట్రిన్సిపాల్ డాక్టర్ సి మధుసూదన్ శెట్టి, హెచ్ ఓడి ఆర్ ఈ యుగంధర్ , ఎన్ ఎస్ ఎస్ విభాగం కో ఆర్డినేటర్ సంపత్ కుమార్ , గ్రామ ప్రజా ప్రతినిధులు, అధికారులు పాల్గొన్నారు.

నెరవాడ లో ఉచిత హెల్డ్ చెకప్...

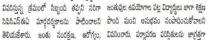
నంద్యాల భుతినిధి. ఏడ్రుల్ 28. సీమరత్నం న్యూస్ : కాంతి రాం ప్రార్మన్ కళాశాల ఎన్ఎస్-ఎస్ కళాశాల అధ్యర్భంలో పాజ్యం మండలం నెరవాడ గ్రామంలో ఉదిత హెల్త్ చెకప్ క్యాంప్

శుజ్రారం నిర్వహించారు. ත් බංග්තුං**ණ** 175 month for printingets దీరీ, మగర్ పరీక్షలు షాగ్రిగా ಕರಿಕಂಗ್ ವೆಸಿ ಮಂದುಲ ರ್ಶದ್ ಇದಿಕಂಗ್ ಸಂಶಿಡೆ ವೆಕ್-ರು. ಮಗರ ಪರಿಕ್ಷಕ್ పాటు జాభ్చరో రక్ష్మవసరణ ತರಿಯತೆಗೆ ಪರಿಶ್ವ, ಕಾಟರಿಕ ණුව ක්රමණ මඩයාශ්රී పరీక్షలు నిర్వహించారు. కార్య బ్రామంలో కళాశాల భిన్నిసాల్ దాక్షర్ సి. మధుసూదన్ శెబ్ది హెక్కడిఆర్ ఈ యుగందర్. ఎన్ఎస్ఎస్ పభాగం ఆర్థినేటర్ సంపత్ కుమార్, గ్రామ (ప్రశా (ప్రతినిధులు, ఆధికారులు పాల్చాన్నారు.

ఔషధ రంగంలో ఏఐని వినియోగించా

గ్రామీణం, న్యూస్ట్ టుడే: ఏఐని ఉపయోగించి మరిన్ని చేపట్టాలని ఆర్జీఎం విద్యాసంస్థల ఫైర్మ

ంతిరాముడు అన్నారు. శుక్రవారం శాంతిర రార్మసీ కళాశాలో ఔషధ రూపకల్పన, ఆభివృ విశ్లేషణ, రోగి సంరక్షణలో ఆవిష్కరణలు ఆ అంశంపై ఇండో కరేబియన్ అంతర్జాతీం



ఫార్హసీ విద్యార్థులకు జంతు సంరక్షణ జాతీయ సదస్సు

ప్రజాపవర్ పాణ్యం జూలై 22: మందలపరిదిలోని నెరవడ గ్రామనమీపంలో ఉన్న శాంతిరాం కళాశాలలో ఫార్మసీ చదువుతున్న విద్యార్థులకు ప్రయోగశాలలో జంతువులపై సంరక్షణ, అవగాహన నదస్సును శాంకిరాం కళాశాల యాజమాన్యం యోగివేమన విశ్వవిద్యాలయంలోని జంతు శాస్త్ర విభాగ అధ్యాపకుడు డా.ఆర్ వెంకట్రామిరెడ్డి చేత విద్యార్థులకు జాతీయ సదస్సును నిర్వహించారు. ఈ సందర్భంగా ఆయన మాట్లాడుతూ ప్రయోగశాలలోని వివిధ రకాల జంతువులను గూర్చి విద్యార్థులకు

నియంత్రించాలని తద్వారా జంతు సంరక్షణ జరుగుతోందని వివరించారు. ఈ కార్భక్రమంలో కళాశాల బ్రిపిస్ట్లుల్ డా.సి మధుసూదన్ చెట్టి, వివిధ ఫార్మసీ కళాశాలల సిబ్బంది, విద్యార్థులు

జంతువుల సంరక్షణ పట్ట బాధ్యతగా ఉండాలి

పాజ్యం, జూలై 22 : అంతుషల సంరక్షణ, తేయన్ను, ఆరోగ్యం పట్ ావుతగా ఉండాలని యోగివేమన విశ్వవిద్యాలయం అంతుగాన్ల విధాగు లర్వానకుడు దాశ్లన్ పెంకటరామిరెడ్డి అన్నారు. మండలంలోని కాంతిరాం పార్య కారాలలో శనివారం ప్రయోగశాలలోని అంతువల ఉపయోగం, సందర్భం అంశంపై జాతీయ నదన్ను నిర్వహించారు. కార్యక్రమానికి ముఖ్య అతిడిగ ాజకైన అయన మాట్లాడుతూ మానవీయ సంరక్షణ, బ్రమోగశాల జంతుషణ ఉపయోగంలో శిక్షణ పొంది అధిక మైరణ, అనుభవం, విధులు, బాధ్యతల నిర్వహించడంలో శ్రద్ధ వహించాలన్నారు. పరిశోధన సౌకర్యాలలో పర్యావరం పరిస్థితులను జాగ్రత్తగా వియంత్రించాలన్నారు. తద్వారా అంతు సంరక్షణ ఉపయోగానికి, పరిశోధన నిర్వహించడానికి ఉత్తమమైన పరిస్థితుల నెలకొంటాయని పేర్కెన్నారు. కార్మకమంలో ప్రస్తిపాల్ డాక్టర్ మధునూడ. రెట్టి, అధ్యాపకులు, విద్యార్తులు పాల్మొన్నారు.

డ్రజావవర్ పాణ్యం జూలై 24: ండలవరిధిలోని నెరవడ గ్రామమెట్ట బుందలపరిధిలోని నెరవడ (గామమెట్ల ఉన్న శాంతిరాం ఫార్మస్ కఠాశాలలోని డి.ఫార్మస్, బీ.ఫార్మస్ చరువుతున్న విద్యార్థులకు జవహర్షాల్ నెహ్రూ వెశ్వవిద్యాలయం అనంతపురం లోని ఎన్ఎస్ఎస్ ఆధ్వర్యంలో భాగంగా ఎశ్వవద్యాలయ్ అధ్వర్యంలో భాగంగా పర్యావరణ పరిరక్షణపై కళాశాల యాజ మాస్యం విద్యార్థుల చేత ఎక్స్పో ప్రక్రామ్మార్థు (మక్కటిత్ మాన్యం విద్యార్థుల చేత ఎక్స్పో నిర్వహించారు. ప్రకృశిలో పర్యావరణానికి హాని కలిగించే భౌతిలో రసాయనిక, జీవ నంబంధమైన పదార్థాలు వైరస్ట రూపంలో సహజీవనం చేస్తున్నాయి. పర్యావరణాన్ని రక్షించే దిశగా విద్యార్థులు భూమి, నీరు, గాలి, దెట్లు, తీవ జంతు జాతులను మన చుట్టూ ఉన్న (ప్రకృతిని మోదల్స్)

రూపంలో నిర్వహించారు. కార్యక్రమంల రూపంలో నిర్వహించారు. కార్యక్రమంలో ఉత్తీర్మలైన వారికి మొదలి బహుమతి ద్రవంసా పత్రం 500 నగదును, రెందవ బహుమతి 300 రూపాయలు విద్యాస్తులు తీసుకున్నారు. ఈ కార్యక్రమంలో కళాశాల (ప్రిచ్చిపల్ దా. సి. మధుసూదన్ చెట్టి, కోఆర్థినేటర్ ఎన్.వై సుబ్బర్యు, కళాశాల సిబ్బంది, విద్యార్థులు తదితరులు పాల్గొన్నారు.

చదరంగంతో మేధాశక్తి పెరుగుదల

పాణ్యం గ్రామీణం, న్యూస్ట్ మేదరం గంతో విద్యార్థుల మేధాశక్తి పెరుగుతుందని శాంతిరాం ఫార్మసీ కళాశాల ట్రిన్సిపల్ మధుసూ

చదరంగం పోటీలో విద్యార్థులు

దన్ అన్నారు. గురువారం అంతర్వాతీయ చద రంగ దినోత్సవాన్ని పురస్కరించుకుని కళాశా లలో విద్యార్థులకు చదరంగం పోటీలు నిర్వ హించి విజేతలకు బహుమతులు అందజేశారు. కార్యక్రమంలో వ్యాయామ సంచాలకుడు ముని శంకర్, సిబ్బంది పాల్గొన్నారు.

శాంతిరాం ఫార్హసీలో ప్రాంగణ నియామకాలు

ప్రజాపవర్ పాణ్యం జూన్ 25 : మండలంలోని శాంతిరం ఫార్మసీ కళాశాలలో బుధవారం ప్రాంగణ నియామకాలు నిర్వహించినట్లు కళాశాల ప్రిస్పిపల్ డాక్టర్ మధుసూదన చెట్టి తెలిపారు. ఇండియన్ ఇమ్యూనొలాజికల్స్ లిమిటెడ్ 🖥 నిర్వహించిన ప్రాంగణ ఎంపికలో 70

మందికి పైగా విద్యార్థులు పాల్గొన్నారు. మొదటి రౌండ్*లో 23 మంది విద్యార్థులు ఎంపిక చేయబ*డ్డారు. తుదిరౌండ్*లో మొత్తం 15 మంది విద్యార్థులు విజయవంతంగా ఎం*పికయ్యారు. ఈ ప్రాంగణ ఎంపికలో కళాశాల దైరెక్టర్ డాక్టర్ అశోక్ కుమార్, ఇండియన్ ఇమ్యునో లాజికల్ లిమిటెడ్ సంస్థ డిప్యూటీ జనరల్ మేనేజర్ రాందాస్ ఒబ్లీ సుందర్, (ప్రొడక్షన్), చీఫ్ మేనేజర్ టి. శివ శంకర్, (హ్యూమన్ రీసోర్సెస్), బ్రొడక్షన్ మేనేజర్ మ ఎం. విశ్వనాథ్ రెడ్డి, (బ్రొడక్షన్), ప్లేస్మెంట్ అధికారి దాక్టర్ బద్దీనాథ్ పాల్గొన్నారు. ఎంపికైన విద్యార్థులకు కళాశాల యాజమాన్యం తరఫున అభినందనలు తెలియజేస్తూ ధృవీకరణ పత్రాలు అందజేశారు.ఈ సందర్భంగా కళాశాల ప్రిన్నిపాల్ మాట్లాదుతూ విద్యార్థులు పరిశ్రమ అవసరాలకు అనుగుణంగా సన్నద్దం కావడం హర్మకరం. పరిశ్రమలలో అనుభవజ్ఞులైన ప్రతినిధులు స్వయంగా వచ్చి ఎంపిక చేయడం విశేషం అని తెలిపారు.

డ్రగ్న్ రహిత జిల్లాగా మారుద్దాం

ఇట్లాడ్ పర్యాతి రాజుకుంటాలో ఇక్కాల్ (మ్యాతాన్); త్రజలు, యువత సహకారం ముత్తు వదార్థాల వినియోగాన్ను అరిశక్తి టైగ్స్ ఈ జిల్లాగా మూరుద్దామని జిల్లా కరిశ్రల్లో ముహురా విలువున్నారు. గురువారం ప్రవంత మూరు ముత్తు ముత్తు మారు ముత్తు ముత్తున్న ముత్తు ముత్

ABN

17.

న్యాల్లా వ్యతిరేకిస్తూ రాజీనామా చేసినట్లు, బీజేపీలో ఈనెల తేదీన నందికొట్కూరులో భారీ రీలీతో చేరుతున్నట్లు ఆయన తెలిపారు.

జీప్యాట్ల్ విద్యార్థుల ప్రతిభ

పాణ్యం, జూన్ 27 (ఆంధ్రజ్యోతి): గ్రాడ్యుయేటెడ్ ఫార్మసీ ఆప్టిట్యూడ్ టెస్ట్ (జీప్యాట్) 2025 ఫలితాల్లో శాంతిరాం పార్మసీ విద్యార్థిని అత్యుత్తమ డ్రవిభ చూపారని కళాశాల డ్రిన్సిపాల్ డాక్టర్ ముదుసూదన్శెట్టి తెలిపారు. శుక్రవారం ఆయన మాట్లాడుతూ ఇందులో ఉత్తీర్ములైన విద్యార్థులకు ఉన్నత విద్యాశాఖ ద్వారా స్టైఫండ్ లభిస్తుందని చెప్పారు. శాంతిరాం ఫార్మనీ కళాశాలకు చెందిన విద్యార్థిని ఎస్. అర్షియాకౌనైన్ దేశవ్యాప్తంగా 121వ ర్యాంక్ సాధించిందని తెలిపారు. కళాశాల పైర్మెస్ డాక్టర్ శాంలిరాముడు, డైరెక్టర్ శివరాం, డీన్ డాక్టర్ అశోక్కమూర్ ఉత్తమ ర్యాంక్ పచ్చిన విద్యార్థినిని

తెలంగాణ పీజీ సెట్ల్లో ప్రథమ ర్యాంకు

పాణ్యం, జూన్ 29 (ఆంధ్రజ్యోతి) : తెలంగాణ పీజీసెట్ ఫార్మసీ విభాగంలో శాంతిరాం ఫార్మసీ కళాశాల విద్వారిని షేక్ అర్షియా కోనైన్ రాష్ట్ర ప్రథమ ర్యాంకు సాధిం చినట్లు ట్రిన్సిపాల్ డాక్టర్ మధుసూదన్శెట్టి తెలిపారు. ఆదివారం ఆయన మట్లాడుతూ తెలంగాణ పీజీసెట్ 2025 పార్మసీ విభాగం పరీక్షా ఫలితాల్లో విద్యార్థిని తెలంగాణ రాష్ట్ర మొదటి ర్యాంకు సాధించిందన్నారు. వంద

షేక్ అర్షియా కోసై న్

మార్కులతో రాష్ట్ర ప్రథమ ర్యాంకు సాధించిందన్నారు. కళాశాల ఛైర్మన్ డాక్టర్ ఎం శాంతిరాముడు, ఎండీ శివరామ్, డైరెక్టర్ డాక్టర్ అశోక్కుమార్, అధ్యాపకులు, కళాశాల సిబ్బంది విద్యార్థినిని అభినం దించారు.

శాంతిరాంలో ఫార్ష్మసీ గ్రాడ్యుయేషన్ దే

ముఖ్య అతిథులు, కళాశాల అధ్యాపకులు

పాణ్యం, ఆగస్టు 23 : (ఆంధ్రజ్యోతి): మండలంలోన శాంతిరాం పార్మసీ కళాశాలలో శనివారం సమవర్తన 2021 గ్రాడ్యుయేషన్ డే ఘనంగా నిర్వహించారు. ఈ కార్యక్రమానికీ ముఖ్య అతిథిగా హైదరాబాదు ఎన్ ఎంఐఎస్ డైరెక్టర్, అశ్విగి ఎస్ దేశ్పాండే, విజయవాడ అను గ్రూప్స్ హాస్పిటల్స్ వ్యవస్థాన హైదరాబాదు ఎన్ ఎంఐఎస్ డైరెక్టర్, అశ్విగ కులు డాక్టర్ రమేష్ గాజు పాల్గొన్నారు. వారు మాట్లాడుతూ తక్తి దండ్రుల కృషి వల్లే ఈ స్థాయికి చేరుకున్నారని, వారికి ఎక్త ప్పుడూ రుణపడి ఉండాలన్నారు. అనంతరం బీఫార్మనీ, పార్మెడీ ఎంపార్మనీ పట్టభ్రదులకు పట్టాలు, పతకాలు అందజేశారు జాతీయ స్థాయి, రాష్ట్రస్థాయిలో నిర్వహించిన పలు పోటీ పరీక్షల్తో ఉత్తమ ప్రతిభ కనబర్చిన బిపార్మనీ విద్యార్థిని షేక్ ఆర్షియాక రూ. 50 వేల నగదు పురస్కారాన్ని అందజేశారు. కార్యక్రమంలో కళాశాల డైరెక్టర్ అశోక్కుమార్, (ప్రిన్సిపాల్ డాక్టర్ మధుసూదన్ శెట్టి, విద్యార్థుల తల్లిదండ్రులు పాల్గొన్నారు.

శాంతిరాం ఫార్హసీలో ఘనంగా జాతీయ క్రీడా

పాణ్యం ఆగస్టు 29 సూర్య స్మూస్ : శాంతిరాం ఫార్మసీ కళాశాలలో జాతీయ క్రీదా,తెలుగు భాషా దినోత్సవాలు ఘనంగా జరిగాయి.హాకీ లెజెంద్ మేజర్ ధ్యాన్ చంద్ జయంతిని ్ళురస్కరించుకుని బ్రతి సంవత్సరం ఆగస్టు 29న జరుపుకునే జాతీయ (కీదా దినోత్సవం

సందర్భంగా కళాశాలలో వివిధ (కీడా పోటీలు నిర్వహించారు.ఈ సందర్భంగా వాలీబాల్, డ్రోబాల్, చెస్, క్యారంస్, మ్యూజికల్ చైర్స్ మరియు తగ్ ఆఫ్ వార్ వంటి ıకీడా పోటీలు నిర్వహించగా విద్యార్థులు ఉత్సాహంగా పాల్గొ న్నారు. ట్రిన్సిపాల్, అధ్యాపకులు, విద్యార్యలు కలసి (కీదా స్పూర్తిని ಟ್ರಿಕ್ಸ್ ಪಿಂವಾರು. ತಲುಗು ಭಾವಾ - న దినోత్సవాన్ని పురస్కరించుకుని "దేశభాషలందు తెలుగు లెస్స" అనే నినాదంతో గిడుగు వెంకట రామమూర్తి గారి జయంతి సందర్భంగా ప్రత్యేక కార్యక్రమం నిర్వహించారు. విద్యార్థులు తెలుగు భాషా ప్రాధాన్యతను తెలియజేసూ వ్యాసాలు, ద్రసంగాలు అందించా రు. కళాశాల ట్రిన్సిపాల్ దాక్టర్

మధుసూదన చెట్టి మాట్లాడుతూ, "(క్రీదలు శారీరక దృధత్వానికే కాకుండా మానసిక ఉల్లాసానికి దోహదం చేస్తాయని,అలాగే మన మాతృభాష తెలుగు భాషను కాపాడుకోవడం డ్రుతి ఒక్కరి బాధ్యత" అని తెలిపారు.కళాశాల ఎన్ ఎస్ ఎస్ కోఆర్డినేటర్, ఫిజికల్ డైరెక్టర్, అధ్యాపకులు, విద్యార్థులు ఉత్సాహంగా ఈ కార్యక్రమంలో పాల్గొన్నారు.

PLACEMENTS

SANTHIRAM COLLEGE OF PHARMAC

roved by AICTE & PCI, New Delhi - Affiliated to JNTUA, Anantapur, Accredited by NAAC with Grade A+ 2(f) recognition by UGC Act 1956., An ISO 9001 : 2015 Certified Institute.

NH-40, NERAWADA (V) Nandyal - 518501, Nandyal (Dt), A.P., India.

Cell No. 9866308468 / 8106801511 / 9703385777

PLACEMENTS IN 2024-2025

PROUD TO ANNOUNCE

S.No	Date	Recruiter	No.of Students Placed	
1	29-10-2024	Anu Hospitals, Vijayawada	6	
2	07-02-2025	Medi Tech Hire, Banglore	31	
3	17-02-2025	Promea Labs, Hyderabad	3	
4	22-02-2025	Omega Health Care, Chennai	38	
5	11-03-2025	Divis Labs, Hyderabad	14	
6	11-04-2025	Corro Health, Banglore	56	
7	25-06-2025	Indian Immunologicals	11	
		159		

ACTIVITIES & ACHIEVEMENTS

SANTHIRAM COLLEGE OF PHARMACY

proved by AICTE & PCI, New Delhi - Affiliated to JNTUA, Anantapur, Accredited by NAAC with Grade A+ 2(f) recognition by UGC Act 1956., An ISO 9001 : 2015 Certified Institute. NH-40, NERAWADA (V) Nandyal - 518501, Nandyal (Dt), A.P., India. Cell No. 9866308468 / 8106801511 / 9703385777

S.No	Name of the Cell	2024-25	2023-24	Total
1	Sports & Games	5	6	11
2	Alumni	2	2	4
3	NSS & Community	11	10	21
4	Cultural & Literacy	10	8	18
5	Women Empowerment	3	4	7
6	Skill Development	5	6	11
7	Minority Cell	1	2	3
8	Environment Protection	8	7	15
9	IQAC	5	6	11

SANTHIRAM COLLEGE OF PHARMACY

proved by AICTE & PCI, New Delhi - Affiliated to JNTUA, Anantapur, Accredited by NAAC with Grade A+ 2/f) recognition by UGC Act 1956., An ISO 9001 : 2015 Certified Institute. NH-40, NERAWADA (V) Nandyal - 518501, Nandyal (Dt), A.P., India. Cell No. 9866308468 / 8106801511 / 9703385777

RESEARCH & DEVELOPMENT (R&D) CELL ACTIVITIES

S. No	Academic Year	Number of Research papers published in journal (SCI/ESCI/SCOPUS/UGC CARE)	Number of Patents Granted	Number of Papers Published in National Conferences	Number of Papers Published in International Conferences	Number Of Books Authored	Number of Book Chapters Authored
1	2023-24	22	13	6	3	1	1
2	2024-25	25	10	8	4	1	1

THE EDITORIAL BOARD

JEEVAN SANTHI DEPT. OF PHARMACY PRACTICE SANTHIRAM COLLEGE OF PHARMACY

NH 40, NANDYAL, A.P, India, PIN: 518 501.

Email: pharmacypracticesrcp@gmail.com/Website: www.srcpnandyal.edu.in

